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1 Introduction

Often, we would like to estimate values that may be computationally infeasible
to explicitly compute. The Monte Carlo method describes a set of techniques
for estimating these values via sampling. One simple example is estimating the
value of π. In more complex examples, sampling from the set of all possible
assignments can be inefficient and one must cleverly construct sample spaces
in order to produce a fast and reliable estimates of desired quantities. These
notes describe the application of Monte Carlo methods to estimate the value of
π, approximate the number of satisfying assignments to a DNF formula, and
to count the number of independent sets in a graph. The material in these
notes follows the lectures of Professor Ramamohan Paturi in CSE203A at the
University of California, San Diego and additionally the details contained in
chapter 10 of [1].

2 Basic Example: Estimating π

Consider the estimation of the value of π. We draw a circle about the origin
with radius 1 and a square centered at the origin with edge-length 2 and edges
parallel to the x and y axis. Thus any point with x value on the interval [−1, 1]
and y value on the interval [−1, 1] is inside the square.

We choose choose points (x, y) uniformly randomly in these intervals and
determine whether or not they lie inside the circle with the following algorithm.

The probability that each point lands inside the circle is equal to the pro-
portion between the area of the circle (π), and the area of the square. Thus,
because each point is drawn independently, E(Z) = mπ

4 . We let Z ′ = 4Z/m.
Thus E(Z ′) = π.

2.1 Chernoff Bounds for Estimating the Value of π

However, knowing E(Z ′) to be equal to π provides no guarantee that for any
given run of the algorithm, Z ′ takes value that is actually close to π. To analyze
the concentration of Z ′ about its mean requires the use of Chernoff bounds.
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Algorithm 1 Estimating π

Z ← 0
for i = 1 : m do

(x, y)← random()
if x2 + y2 ≤ 1 then

Z + +
end if

end for
return Z

We would like to know the probability that our estimate Z ′ is within some
factor ε of π, thus we want to bound the probability that it lies outside that
range.

Pr(|Z ′ − π| ≥ επ) = Pr
(∣∣∣Z − mπ

4

∣∣∣ ≥ εmπ

4

)
= Pr(|Z −E(Z)| ≥ εE(Z)

≤ 2e−mπε
2/12

Thus for a given confidence parameter δ, we must choose m large enough so
that 2e−mπε

2/12 ≤ δ:

m ≥ 12 ln(2/δ)

πε2

3 Approximate-Uniform Sampling

Let xi (1 ≤ i ≤ n) be iid 0-1 random variables such that Pr(xi) = p. Let
X =

∑n
1 xi Then E(X) = pn Applying Chernoff bound:

Pr(x ≥ (1 + ε)pn) ≤ e−ε
2pn/3

Pr(x ≤ (1− ε)pn) ≤ e−ε
2pn/2

A sampling algorithm generates an ε-uniform sample w from Ω if ∀S ⊆
Ω, |Pr(w ∈ S)− |S||Ω| | ≤ ε.

4 The DNF Counting Problem

Definition 4.1. A(x) is a fully polynomial randomized approximation scheme
for a function P (x) given parameters ε, δ and some input x, where ε > 0 and
δ < 1 returns an (ε, δ) approximation to P (x) in time polynomial to |x|, 1

ε ,
ln( 1

δ ).
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We want to count the number of satisfying assignments of of a Boolean
formula in disjunctive normal form (DNF). A DNF formula is a disjunction of
clauses (C1, ..., Cl) where each clause is a conjunction of literals. For example:

F (x) = (x1 ∧ x̄2 ∧ x3) ∨ (x2 ∧ x4) ∨ (x̄1 ∧ x3 ∧ x4)

We define #F to be the number of satisfying assignments of our DNF for-
mula. It seems sensible to sample random assignments from some sample space
and infer from the fraction of such assignments that satisfy the formula, the
value of #F . A naive choice of sample space would be set of all possible assign-
ments, Ω = {0, 1}n with cardinality |Ω| = 2n.

4.1 Simplistic Approach

To estimate π, we drew samples from the set of all points in the feasible interval
and based our estimate on the fraction of points that fell inside the circle. To
estimate the number of satisfying assignments of the DNF counting problem,
we could proceed analogously, drawing samples uniformly randomly from the
set of all assignments.

Algorithm 2 Estimating the Number of Satisfying Assignments

Generate a random sample x = (x1, ..., xn).
if F (x) is true then

yi = 1
else

yi = 0.
end if
y =

∑m
i=1 yi

y′ = 2ny
m

Clearly, E(yi) = #F
|Ω| = #F

2n . Because the expectation of the sum equals

the sum of the expectations, E(y) =
∑m
i=1E(yi) = m#F

2n . Therefore, E(y′) =
#F . However it is insufficient to show that the expectation of y′ is equal to
the expectation of #F . As with the estimation of π we must provide a (ε, δ)
approximation.

4.2 Chernoff Bounds for Simplistic Approach to DNF

We want to lower bound the probability that our approximation y′ for #F is
correct within a factor ε.

Pr[|y′ −#F | ≥ ε#F ] = Pr

[∣∣∣∣y − #F

2n

∣∣∣∣ ≥ εm#F

2n

]
Applying union bound:

≤ 2e
−ε2m#F/2n

3
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Thus, to provide an (ε, δ) approximation, we must choose m = 3/ε2 · ln 2
δ

2n

#F .
This would require exponentially many samples from ω with respect to the size
of n. Thus to achieve an FPRAS, we must construct a different sample space.

4.3 FPRAS for DNF Counting

To produce a fully polynomial randomized approximation scheme we must con-
sider other sample spaces. Specifically, we must find one such sample space Ω′

so that #F
|Ω′| is sufficiently large.

Our new sampling procedure considers that every clause can be satisfied,
i.e., does not include both a variable and its negation. Any such clause is never
satisfiable and thus can be removed from the formula. If clause Ci has li literals,
there must be 2n−li assignments which satisfy Ci. Letting SCi denote this set
of assignments which satisfy Ci and

We let Ω′ = {(i, x)|1 ≤ i ≤ n, x ∈ SCi}. We want to estimate #F =⋃t
i=1 SCi. |Ω′| may be larger than #F because any given assignment might

satisfy more than one clause. Thus we define a subset S ⊆ Ω′ by selecting
only one pair for each assignment. We do this by choosing the pair (i, x) which
occurs first, i.e., for which i is lowest.

S = {(i, x)|x ∈ {0, 1}n1 ≤ i ≤ l}

We estimate #F with the following algorithm([1]).

Algorithm 3 Estimating the Number of Satisfying Assignments for DNF

c← 0.
for k = 1 : m do with probability |SCi|/

∑t
i=1 |SCi|, choose uniformly at

random an assignment x ∈ SCi.
if x is not in any SCj , j < i then

c← c+ 1
end if

end for

As |Ω′| is known, we need only to approximate the ratio of S to |Ω′| in order
to estimate the |Ω| and thus #F. Because any assignment can satisfy at most l
clauses, this ratio must be at least 1/l.

E(yi) = Pr[yi = 1] =
#F

Ω′
≥ 1

l

5 Estimating Number of Independent Sets

Definition 5.1. We let w be the output of a sampling algorithm for a finite

sample space Ω. If for an subset |S| of Ω,
∣∣∣Pr(w ∈ S), |S||Ω|

∣∣∣ ≤ ε, the sampling

algorithm generates an ε-uniform sample. If it additionally, runs in time poly-
nomial in lnε−1 and the size of input x, it is a fully polynomial almost uniform
sampler (FPAUS).
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We consider the example of estimating the number of independent sets in
a graph G = (V,E). A uniform sampling takes as input our graph G and a
parameter ε, outputting an ε-uniform sample in time polynomial with respect
to ε−1. We demonstrate that given an FPAUS for sampling independent sets,
we can produce an FPRAS for estimating the counting their number.

We assume our edgeset E contains m edges and impose on them some arbi-
trary ordering e1, ..., em. By Ei, we denote the set of the first i edges in E and
we define Gi = (V,Ei). Ω(Gi) is the set of independent sets in the graph Gi.

|Ω(G)| = |Ω(G0)| × |Ω(G1)|
|Ω(G0)|

× ...× |Ω(Gm)|
|Ω(Gm−1)|

(1)

By ri, we express the ratio between the number of independent sets in con-
secutive graphs.

ri =
|Ω(Gi)|
|Ω(Gi−1)|

, i = 1, ...,m

Substituting into equation 1, gives

Ω(G) = 2n
m∏
i=1

ri

.
Therefore good estimates of the ratios of |Ω(Gi)| to |Ω(Gi−1)| for all i com-

bined with the knowledge that |Ω(G0)| = 2n can be used to approximate Ω(Gm).
We label our estimated ratios r̃i. And thus our estimate of ΩG is expressed

2n
m∏
i=1

r̃i

.
To capture an (ε, δ) approximation of the|Ω(G)|, we must bound the expres-

sion

R =

m∏
i=1

r̃i
ri

.

Lemma 5.2. Suppose that for all i, 1 ≤ i ≤ m, r̃i is an (ε/2m, δ/m)-approximation
for ri. Then

Pr (|R− 1| ≤ ε) ≥ 1− δ

Proof. For all i such that 1 ≤ i ≤ m,

Pr
(
|r̃i − ri| ≤

ε

2m
ri

)
≥ 1− δ

m

Applying the union bound, the probability that for any i, |r̃−ri| > (ε/2m)ri
is at most δ. Combining these bounds yields:
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1− ε ≤
(

1− ε

2m

)m
≤

m∏
i=1

r̃i
ri
≤
(

1 +
ε

2m

)m
≤ 1 + ε

Thus, given some method for producing an (ε/2m, δ/m)-approximation for
each ri, we can produce an (ε, δ) approximation of the number of independent
sets in G. Using the Monte Carlo method and an FPAUS for sampling indepen-
dent sets, we can produce such an approximation of ri. The algorithm below
uses an FPAUS and the Monte Carlo method to produce such an approximation
of ri.

Algorithm 4 Estimating ri
1: Input: Graphs Gi−1 and Gi
2: Output: r̃i, an approximation for ri
3: X ← 0
4: for M = 1 : 1296m2ε−2ln(2m/δ) do
5: Generate an (ε/6m)-uniform sample from Ω(Gi−1)
6: if The sample is in the independent set of Gi then
7: X ← X + 1
8: end if
9: end for

10: return r̃i ← X/M

5.1 Correctness of Algorithm 4

Lemma 5.3. When m ≥ 1 and 0 ≤ ε ≤ 1, algorithm 4 produces and (ε/2m, δ/m)-
approximation for ri.

Proof. First, we lower bound ri by 1/2. This is clear because the introduction
of an edge introduces one pair of vertices (u, v) that can no longer coexist in an
independent set. By considering that any independent set containing both u and
v has a corresponding independent set containing only u and not v. By simply
removing v from consideration we eliminate at most half of the independent
sets, i.e., ri ≥ 1/2.

By the definition of an FPAUS and because our samples are produced by a
(ε/6m)-uniform sampler,∣∣∣∣Pr(Xk = 1)− |Ω(Gi)|

|Ω(Gi−1)|

∣∣∣∣ ≤ ε

6m
,

Where each Xk is true if the kth sample from Ω(Gi−1) is contained in Ω(Gi).
Because each Xk is a Bernoulli random variable,∣∣∣∣E(Xk)− |Ω(Gi)|

|Ω(Gi−1)|

∣∣∣∣ ≤ ε

6m
.
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Therefore,

E(r̃i)− ri ≤
ε

6m
.

Because with enough samples, r̃i is close to E(r̃i) and E(r̃i) is close to ri,
and because ri is lower bounded by 1/2, we can show that

E(r̃i) ≥ ri −
ε

6m
≥ 1

2
− ε

6m
≥ 1

3

We now apply the following theorem: [1] Given independent and identically
distributed indicator random variablesX1, ..., Xm, andm ≥ (3ln(2/δ))/ε2E(Xi))

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

Xi −E(Xi)

∣∣∣∣∣ ≥ εE(Xi)

)
≤ δ

Therefore if

M ≥ 3ln(2m/δ)

(ε/12m)2(1/3)
= 1296m2ε−2ln

2m

δ
,

then

Pr

(∣∣∣∣ r̃i
E(r̃i)

− 1

∣∣∣∣ ≥ ε

12m

)
=≤ δ

m
,

i.e., with probability 1− δ
m ,

1− ε

12m
≤ r̃i
E(r̃i)

≤ 1 +
ε

12m
(2)

Because ri ≥ 1/2,

1− ε

3m
≤ E(r̃i)

ri
≤ 1 +

ε

3m
. (3)

Combining equation 2 and equation 3, with probability 1− δ/m,

1− ε

2m
≤ r̃i
ri
≤ 1 +

ε

2m

This is the (ε/2m, δ/m) approximation of ri that we require. Combined with
Lemma 5.3, this gives us an (ε, δ) approximation of the number of independent
set in time polynomial to |x|, 1

ε , and ln 1
δ .
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