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Problem 2.8

(a) Stop having children until they have a girl or )1( kk children. Each child is a boy or girl is

independently with probability
2
1

and there are no multiple births. Derive the expected number

of female children they have. Derive the expected number of male children they have.

Solution:

Suppose the event of having a girl is gX , the event of having boys is bX .

So
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According to the sum of geometric sequence
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Then we derive the expectation of the number of boys. For example we use a sequence 1s to

represent the sequence of the births of their children, suppose bbbbgs 1 , which means the 1st

child is a boy, the 2nd child is a boy, ... And the last child is a girl, it is obvious to see that if we

have a sequence bbbbbs '1 ,
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bbbbbbs 2 , bbbbbgs '2 , which indicates that ]|Prob[]|Prob[ 11 sgsb  , since the

probability of having either a boy or a girl is equal to
2
1

. Applying the same principle, we can

deduce the more general expression of )( bXE and )( gXE . According to conditional
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probability, we have:
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So according to mathematical induction, we have
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(b) Stop having children only when they have a girl. Derive the expected number of boys that
they have.

Solution:

Suppose Bob and Alice keep having children until they have a girl is event I .

This event is the union of many sub-events, namely,

1. The first child they have is a girl, so the number of boys they have is 0, with probability
2
1

.

2. The second child they have is a girl, so the number of boys they have is 1, with probability
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3. .....
4. ....
....
n-1. The n -th child they have is a girl, so the number of boys they have is 1n , with

probability nn )
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Since each sub-event is mutual exclusive, the expectation of event I can be written as:
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Observe this equation, we see that it is similar to the equation of )( bXE in problem (a), since
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, so in this question when n , 1)( IE .


